On the Undecidability of the Identity Correspondence Problem and its Applications for Word and Matrix Semigroups

نویسندگان

  • Paul Bell
  • Igor Potapov
چکیده

In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post’s Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: “Is it decidable for a finitely generated semigroup S of integral square matrices whether or not the identity matrix belongs to S?”. We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several questions for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic and Infinite Traces in Matrix Semigroups

In this paper we provide several new results concerning word and matrix semigroup problems using counter automaton models. As a main result, we prove a new version of Post’s correspondence problem to be undecidable and show its application to matrix semigroup problems, such as Any Diagonal Matrix Problem and Recurrent Matrix Problem. We also use infinite periodic traces in counter automaton mod...

متن کامل

Undecidability Bounds for Integer Matrices Using Claus Instances

There are several known undecidability problems for 3×3 integer matrices the proof of which uses a reduction from the Post Correspondence Problem (PCP). We establish new lower bounds in the numbers of matrices for the mortality, zero in left upper corner, vector reachability, matrix reachability, scaler reachability and freeness problems. Also, we give a short proof for a strengthened result du...

متن کامل

Mortality in Matrix Semigroups

We present a new shorter and simplified proof for the undecidability of the mortality problem in matrix semigroups, originally proved by Paterson in 1970. We use the clever coding technique introduced by Paterson to achieve also a new result, the undecidability of the vanishing (left) upper corner. Since our proof for the undecidability of the mortality problem uses only 8 matrices, a new bound...

متن کامل

The Identity Correspondence Problem and Its Applications

In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post’s Correspondence Problem via several new encoding techniques...

متن کامل

Relation Algebras Can Tile

Undecidability of the equational theory of the class RA of relation algebras can easily be proved using the undecidability of the word-problem for semigroups. With some eeort and ingenuity, one can push this proof through for the larger class SA. We provide another \cause" for undecidability which works for even larger classes than SA. The reason is that we can encode the tiling problem. In doi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Found. Comput. Sci.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010